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A practical diagnostic test is needed for early Alzheimer's disease (AD) detection. Immunosignaturing, a technol-
ogy that employs antibody binding to a random-sequence peptidemicroarray, generates profiles that distinguish
transgenic mice engineered with familial AD mutations (APPswe/PSEN1-dE9) from non-transgenic littermates.
It can also detect an AD-like signature in humans. Here, we assess the changes in the immunosignature at differ-
ent time points of the disease inmice and humans. We also evaluate the accuracy of the late-stage signature as a
test to discriminate between young mice with familial AD mutations from non-transgenic littermates. Plasma
samples from AD patients were assayed 3–12 months apart, while APPswe/PSEN1-dE9 and non-transgenic con-
trols supplied plasma at monthly intervals until they reached 15 months of age. Microarrays with 10,000
random-sequence peptides were used to compare antibody binding patterns. These patterns gradually changed
over the life-span of mice. Strong, characteristic signatures were observed in transgenic mice at early, mid and
late stages, but these profiles had minimal overlap. The signature of young transgenic mice had an error rate
of 18% at classifying plasma samples from late-stage transgenic mice. Conversely, the late-stage transgenic
mice signature discriminated between young transgenicmice and littermates with an error rate of 21%. Less dis-
tinctive profiles were recognizable throughout the transgenic mice lifespan, being detectable as early as
2 months. The human signature had minimal change on short-term follow-up. Our results call for a reappraisal
of the way incipient AD is studied, as biomarkers seen in late-stages of the disease may not be relevant in earlier
stages.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Alzheimer's disease (AD) is themost common cause of dementia, af-
fecting about 35.6 million people world-wide (Chui and Lee, 2002;
Abbott, 2011). Because AD cannot be prevented or cured, the number
of affected persons doubles every two decades, causing crippling cogni-
tive disability and economic losses in excess of $604 billion per year.
Early detection and treatment will be essential to control this problem
(Buckholtz, 2011). In spite of recent advances (Shaw et al., 2007,
2009; Ewers et al., 2011), no specific tests are universally used to diag-
nose AD. As pathology slowly progresses for decades before initial
symptoms emerge (Shaw et al., 2009), and since initial manifestations
are generally subtle (Morris et al., 2001; Kawas, 2003; Grundman et
al., 2004), a potential diagnostic test for AD must be highly sensitive.
Given that future treatments are likely to target people with mild or
no symptoms (Shaw et al., 2007, 2009; Buckholtz, 2011), the test
must also be highly specific. Considering the challenges involved in
dicine, The Biodesign Institute,
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obtaining samples from subjects with early AD stages, we explored
the utility of a test developed using plasma samples from the terminal
phase of the illness as a pre-symptomatic diagnostic tool.

Immunosignaturing is a general diagnostic technology which in-
volves diluting blood and applying it to an array consisting of 10,000
random-sequence peptides (Legutki et al., 2010; Restrepo et al., 2011;
Kukreja et al., 2012b; Stafford et al., 2012; Hughes et al., 2012).
Antibodies bind to the array revealing a signature affected by the health
status of the individual. The initial application of this technology
showed that both transgenic mice with cerebral amyloidosis and
humanswith AD have distinctive immunosignatures relative to healthy
age-matched controls (Restrepo et al., 2011), but no investigation of the
signature stability over time was undertaken. Since the clinical diagno-
sis of AD is corroborated by autopsy in 65–80% of cases (Chui and Lee,
2002), a non-invasive blood test could be useful in clinical practice.
More importantly, the application of this technology to the
pre-symptomatic diagnosis of AD could help prevent or delay the
onset of dementia if disease-modifying therapies become available.
The simplest approach to developing such a test is to use the signature
of autopsy-confirmed AD to create an indicator for early stages of de-
mentia. Here we use a mouse model of AD, APPswe/PSEN1-dE9 mice,
to explore this possibility.

http://dx.doi.org/10.1016/j.jneuroim.2012.09.014
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2. Materials and methods

2.1. Microarray

The protocols, performance, sample preparation methods and
statistical analyses of the technology are described elsewhere
(Brown et al., 2011; Restrepo et al., 2011; Halperin et al., 2012;
Hughes et al., 2012; Kroening et al., 2012; Kukreja et al., 2012a,b;
Stafford et al., 2012). Briefly, an immunoassay was developed using
10,000 random-sequence 20-mers covalently attached to a glass
slide. Peptides were designed with random sequences, except for
glycine–serine–cysteine linkers at the carboxyl (peptide library 1)
or amino (library 2) terminus. Library 1 peptides were synthesized
by Alta Biosciences (Birmingham, UK), spotted in duplicate using a
NanoPrint LM60 microarray printer (Arrayit, Sunnyvale, CA). Library
2 peptides were synthesized by Sigma Genosys (St. Louis, MO),
printed by Applied Microarrays (Tempe, AZ) using a piezo
non-contact printer in a two-up design. Slides were pre-washed
with 33% isopropanol/7.5% acetonitrile/0.5% trifluoroacetic acid,
and blocked with 0.015% mercaptohexanol/3% BSA/0.05% Tween 20
in PBS prior to adding plasma at 1:500 dilution in 3% BSA/0.05%
Tween 20 PBS. Experiments were carried out in a TECAN
HS4800-Pro automated incubator (Tecan, Männedorf, Switzerland).
Biotinylated anti-human (Bethyl, Montgomery, TX) or anti-mouse
(KPL, Gaithersburg, MD) antibodies were incubated with slides,
washed, then followed by incubation with streptavidin-Alexa-647
(Invitrogen, Carlsbad, CA). Slides were scanned with an Agilent ‘C’
scanner (Agilent Technologies, Santa Clara, CA), generating digital
images that were subsequently processed with GenePixPro6.0 (Mo-
lecular Devices, Palo Alto, CA) and analyzed in GeneSpring 7.3.1
(Agilent, Santa Clara, CA).

2.2. Analysis

Once data was imported into GeneSpring, signal intensity was
log10-transformed and median-normalized before analysis. Pearson's
correlation coefficient was calculated across replicate slides to ensure
reproducibility≥0.85. Technical replicatesb0.85 were reprocessed.
Multivariate clustering (two-way hierarchical clustering) was used to
generate heatmaps using Euclidean distance with complete linkage as
the measure of similarity, while principal component analysis (PCA)
was used to display relative differences across samples. Figs. 1–3 utilize
plots of the first three principal components. Peptide microarrays pro-
vided b1.3-fold minimum average detectable fold change at α=0.05
and β=0.20 per 2 technical replicates. For classification we used linear
discriminant analysis (LDA) in R with leave-one-out cross validation to
estimate error. T-test with FWER (family-wise error rate) of 5% is used
to correct for false positives due to multiple testing. The p-values
presented in this paper are not raw but have been adjusted by the
Benjamini and Hochberg false discovery rate algorithm (Benjamini
and Hochberg, 1995).

2.3. Human plasma

Plasma samples from 6 AD patients and 5 age-matched controls
without cognitive derangement enrolled in a brain-bank program
were provided by Alex Roher (Banner Sun Health Research Institute,
Phoenix, AZ). Postmortem examination was performed by a neuropa-
thologist on 9 patients. Samples were acquired after written consent
and approval from the Banner Institutional Review Board (IRB). Profil-
ing studies were approved by ASU's IRB (protocol# 0912004625).

2.4. Mice

Female APPswe/PSEN1-1dE9 TGM and B6C3F1/J non-transgenic
controls (n=5/group) were purchased from Jackson Laboratories (Bar
Harbor, ME) and housed with standard chow and water provided ad
libitum. Plasma samples were processed from blood obtained via sub-
mandibular puncture at monthly intervals beginning at age 2 months
and stored at−80 °C.Micewere sacrificed at 15 months of age through
intra-peritoneal injection of tribromoethanol (5 mg) followed by
intra-cardiac exsanguination and cold PBS perfusion prior to decapita-
tion for brain harvesting. Brain axial sections (3–4 mm thick) were
treatedwith 10% formaldehyde overnight, followed byparaffinprocess-
ing for immunostaining. Murine experiments were conducted under a
protocol approved by the Arizona State University Institutional Animal
Care and Use Committee.

3. Results

Results from immunosignaturing assays require an understanding
of the characteristics of the technology. While expression or SNP
microarrays demonstrate a one-to-one binding between RNA or DNA
and the target probe, the immunosignaturing peptide arrays enable
multiple specificities of antibody to bind a single peptide while a single
antibody may bindmultiple peptides (Kukreja et al., 2012b). This effect
is accommodated by the statistical methods used to select peptides and
is noted as the “Immunosignaturing Effect” (Stafford et al., 2012).

3.1. Stability of human immunosignature

We first asked whether the AD immunosignature in humans is sta-
ble over time. To answer this question, we assayed two plasma samples
collected between 3 and 12 months apart from 5 patients with
AD (4 autopsy-confirmed), 6 normal elderly controls (4 autopsy-
confirmed), and a demented patient with signs of progressive supra-
nuclear palsy (PSP) on autopsy. The time 0 samples were used in a pre-
vious paper which examined whether a signature of AD existed at all
(Restrepo et al., 2011). Fifty peptides were selected by a two-tailed
T-test with FWER=5% (pb4.28×10−10) patients from age-matched
controls using both time 0 and follow-up samples. LDA using these pep-
tides yielded a 0% misclassification rate. We also tested for differences
between time 0 and follow-up using a T-test between ‘early’ and ‘late’
time points. No peptides passed multiple testing criteria. Fig. 1 (left
panel) shows the resulting heatmap where hierarchical clustering was
done using Euclidean distance as the measure of similarity. Clustering
was performed on the peptides (vertical axis) and patients (horizontal
axis) with the colored bars representing the patient class. Patients
showed a strong tendency to group with their follow-up sample. A
PCA demonstrates this effect in Fig. 1 (right panel). A secondary effect,
which is a trait of the immunosignaturing technology, is the higher dis-
persion of points in healthy cohorts, and the relatively tighter grouping
of patients in the disease cohorts (Stafford et al., 2012). This demon-
strates that the immunosignature of Alzheimer's disease is stable over
at least the time course of this collection study. This has not been
shown for any other ongoing or completed immunosignaturing study
of chronic disease. The PSP patient exhibited an intermediate pattern,
although peptides were selected for resolving AD, not PSP. Eight out of
these fifty peptides also bind antibodies raised against Aβ, suggesting
that part of the signature could involve anti-Aβ immune-reactivity
(data not shown and Restrepo et al., 2011). These observations suggest
that AD plasma contains an immunosignature that can distinguish AD
people from non-AD controls reproducibly over time.

3.2. Time course of immunosignatures in APPswe/PSEN1-dE9 mice

Because human plasma samples spanning the entire AD's time
course are rare and difficult to obtain, we used APPswe/PSEN1-dE9
transgenic mice, a well-characterized animal model of AD engineered
with two humanmutations leading to accelerated cerebral amyloidosis
(Jankowsky et al., 2004; Qu et al., 2004, 2006, 2007; Reiserer et al., 2007;
Gotz and Ittner, 2008) to ask two related questions relevant to



Fig. 1. Stability of human immunosignature. Left: heatmap of peptides selected by FWER-corrected T-test (pb4.28×10–10) and plasma samples from AD (red bar), normal controls
(blue bar) and a PSP patient taken at time 0 and follow-up (between 3 and 12 months later). LDA classification error was 0%. Right: PCA of the same plasma samples from AD (red
dots) and controls (blue dots). Note that plasma from a patient with progressive supranuclear palsy (PSP, cyan dots) aggregate with controls, and samples from each patient tended
to migrate with follow-up samples from that same individual.
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developing an early detection diagnostic test: first, how early can a
characteristic signature be detected in transgenic mice relative to
age-matched littermates? Second, can an immunosignature that was
optimized to detect late-stages of the illness be used to diagnose early
phases of the disease? To answer these questions, we assayed plasma
pools from APPswe/PSEN1-dE9mice and B6C3F1/J non-transgenic con-
trols drawnmonthly, starting at 2 months of age and ending 13 months
later (2–15 months). To confirm the expected pathological changes in
APPswe/PSEN1-dE9 mice, we performed hematoxylin–eosin and im-
munostaining on all mice after their sacrifice at 15 months of age. Com-
pared to B6C3F1/J controls, transgenicmice had heavy cerebral amyloid
deposition and robust astrocytosis (see Supplementary Fig. 1). We first
used a two-tailed T-test (p=6.6×10−7 to 3.12×10−5) to find peptides
that discriminated all transgenicmice from the non-transgenic controls,
yielding a total of 39 peptides (Supplemental Table 1). This separation is
displayed in the left panel of Fig. 2 and the PCA in the right panel of
Fig. 2. Most of the 39 peptides showed higher binding in the transgenic
mice, with a trend for increased peptide signal with age. The signature
was evident but faint, even at two months of life.

In another approach, we determined whether peptides that dis-
tinguished APPswe/PSEN1-dE9 from B6C3F1/J at late life stages,
when cognitive problems and AD-like neuropathology are florid,
could be used to discriminate transgenic mice at early disease stages.
Conceptually, this would be analogous to using late-stage dementia
samples to train a system to detect presymptomatic AD. Mice were
divided into three groups according to age: early (2–5 months),
mid (6–9 months) and late (10–15 months). These time-points are
biologically relevant, considering that neurocognitive function in
APPswe/PSEN1-dE9 mice begins deteriorating at 8–9 months of age
(Jankowsky et al., 2004; Qu et al., 2004, 2006, 2007; Reiserer et al.,
2007; Gotz and Ittner, 2008) and their characteristic neuropathology
(cortical plaque formation and astrocytosis) is first observed from 6 to
7 months of age (Jankowsky et al., 2004; Qu et al., 2004, 2006, 2007),
while no neurocognitive or pathological abnormalities are apparent be-
fore four months (Reiserer et al., 2007).

Supplemental Table 2 is a list of the 35 most significant peptides for
each of the three time points and the associated FWER-corrected
p-values. Fig. 3 shows two distinct results: the top panels of Fig. 3 contain
the heatmaps and PCA plots for early, mid and late plasma samples plot-
ted against early, mid and late peptides, respectively. The classification
error for this analysis was 0%. The Venn diagram shows the overlap in
peptides selected by T-test between CP and TGP across early to mid, and
mid to late. There were no peptides that overlapped early and late,
suggesting differences in ongoing pathological processes exacerbated by



Fig. 2. Antibody signature of transgenic mice. Left: heatmap with 39 peptides (pb1.67×10−11) that showed sustained immune-reactivity overtime in transgenicmice (TG) as compared
with B6C3F1/J controls. The y axis lists the different peptides, whereas the x axis depicts plasma pools from TGmice and age-matched controls. (b) Shows a principal component analysis
(PCA) graph of plasma pools belonging to TG (yellow) or B6C3F1/J controls (red), while (c) depicts a PCA of plasma pools drawn early in life (red) versus late in life (yellow). Together,
these diagrams show that plasma pools segregate according to group, but not according to time point.
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time. The analysis was done this way for three reasons: first, in all cases
there were at least 35 peptides that survived multiple-testing correction
(FWER=5%) for each time point. Second, it is easier to demonstrate over-
lap in peptides from one time-point to another when a fixed number of
peptides are used. Third, the classifier (LDA) works best when b100 fea-
tures are used, and 35 features suit this algorithm well. The three
35-peptide sets chosen using a FWER-corrected two tailed T-test (early
pb1.40×10−8, mid pb1.03×10−8, late pb8.7310−7) readily separated
transgenic from non-transgenic mice at each specific time-point.

We then asked whether the 35 peptides that distinguished trans-
genic from non-transgenic littermates at late-stages could differenti-
ate the early-stage mice. The bottom panels of Fig. 3 show the second
set of results, where non-age-matched peptides are asked to classify
disease state. When asked to predict the status of transgenic and
non-transgenic mice, late peptides predicted early stage mice with
a 21% misclassification rate. When late peptides were asked to pre-
dict mid-stage mice, the misclassification rate was 12%. When early
peptides were used to classify late samples, the error rate was 18%.
None of the 39 peptides from Fig. 2 that generally discriminate the
transgenic and non-transgenic mice across all time-points appeared
in the list of the 35 optimized for each stage, suggesting that there
may be antibodies specific to each disease stage. When asked to
find antibodies present evenly and reproducibly throughout the en-
tire disease, the array may have identified lower affinity and perhaps
lower specificity antibodies than the stage-specific ones.

We next asked whether the resolving power of late-stage pep-
tides on early-stage samples could be improved by including more
peptides that were informative against late-stages. Indeed, the top
130 predictive peptides (pb0.000117) for late-stage discrimination
included all 35 early peptides. When these 130 peptides were used
to distinguish transgenic mice at early-stages, the error rate was
zero. Since late-stage peptides had positive predictive power for
early-stages, we asked whether the 35 early peptides predicted
mouse groups when mixed with non-informative peptides. When
we added 95 randomly-chosen peptides to the 35 early peptides
(total=130), LDAmisclassification rate increased to 10%, suggesting
that the 35 early peptides perform well even in the presence of ran-
dom noise. This also indicates that there is predictive power for early
disease in the larger list of late-stage peptides.

4. Discussion

Evaluating the potential of immunosignaturing as a diagnostic
test for early AD, we first looked at the stability of the signatures in
age-matched people with and without AD.We observed a distinctive
AD signature, which remained stable in samples taken 3–12 months
apart in the same person. We previously identified an AD-specific
signature (Restrepo et al., 2011), but now show that the signature re-
mains stable over the short term. A relative proportion of the signa-
ture is personal, while another part is related to the disease state. An
early criticism of the technology was based on the diverse range of
antibodies that different individuals can raise to the same immunogen,
leading to the likelihood that disease-specific signatures would be
overwhelmed by the personal signatures. We show that the disease

image of Fig.�2


Fig. 3. Temporal profile of antibody binding patterns in mice. We tested the classification performance of immunosignatures obtained frommice at different time-points during disease
manifestation. We defined ‘early’ as 2–5 months, ‘mid’ as 6 to 9 months and ‘late’ as 10–15 months of age and selected 35 of the most significant peptides using FWER-corrected T-test.
This figure displays the separation between transgenic mice and their age-matched controls using the three different time-point-specific signatures. Top right: heatmap depicting plasma
pools obtained fromAPPswe/PSEN1-dE9 transgenicmice (TGP) and B6C3F1/J non-transgenic controls (CP). The immunoreactivity of the 35 random-sequence early peptideswas plotted
for the control and transgenicmice at the same time point. Immediately below the heatmap is a principal component plot of the samemice, and the same peptides. The PCAplot shows the
relative difference between individuals using the first 2 principal variance components on the x and y axes respectively. The x axis also lists the proportion of total variance in the first
principal component. Center top: heatmap and principal component display ofmid-stagemice showing separation between TGP and CP. Top right: late individuals plotted using late pep-
tides. The overlap between the peptides selected for each of the time points is shown in the Venn diagrams. There was no overlap between the 35 peptides selected from early and late
stages. When the appropriate stage-specific peptides were used to predict their cognate stage, the leave-one-out cross-validation error rate was 0%. Lower left: when the late peptides
were used to discriminate the early samples, the classification error rate was 21%. Lower middle: when the late-peptide set was used to classify the mid samples, the LDA error rate
was 12%. When the early peptides were used to classify the late samples, the error rate was 18%.
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signature is identifiable over the personal one, and that persons with
the same disease tend to become more immunologically similar than
healthy persons, who seemmore immunologically diverse. If a diagnos-
tic for AD is to succeed, it should detect early signs of the emerging pa-
thology. Because well-curated human time course studies for AD are
difficult to obtain, we collected blood from APPswe/PSEN1-dE9 mice
and age-matched controls from 2 to 15 months of life. When consider-
ing only transgenic and non-transgenic groups without incorporating
time of collection as a factor, we found that 39 peptides could separate
the two groups, with a signature that increased over time (Fig. 2). How-
ever, whenmicewere divided by age into early, mid and late stages, we
found 35 highly-significant peptides capable of distinguishing between
transgenic and non-transgenic mice at each life-stage. There was mini-
mal overlap between the peptide sets that characterized each stage, and
none at all between late and early stages. Late-stage peptides did not
separate mice at early stages of the disease, while mid-stage peptides
performed slightly better. This implies that there is a constantly
refurbished set of antigens that are presented to the immune system
as the disease progresses, perhaps as a result of increasing cellular pa-
thology. By lowering the stringency for selecting peptides from the
late cohort, we began to include peptides that were specific to early
stages of disease, but in an actual clinical setting we would not know
whichpeptideswould be best for early diagnostic. There is an indication
that mid-stage peptides have some resolving power for early diagnosis,
but it is far from perfect. However, if our mice data could be extrapolat-
ed to humans, patients with mild cognitive impairment (MCI) destined
to develop dementia could be used in the selection of AD-specific
peptides. It is possible, considering the unique PSP signature, that
immunosignaturing can distinguish MCI patients who will develop AD
from those developing other neurological diseases.

Antibody binding patterns to microarrays may have diagnostic po-
tential, but immunosignature stability is important for two reasons:
first, if the variation caused by time is small, then larger sample pools
could be used without concerns about noise dampening the signature
over time. Second, if there is a large personal component of the signa-
ture, it could be useful for monitoring disease progression or response
to treatment without regard for commonality to other AD patients. Rel-
ative to the first issue, AD signatures were highly distinguishable from
age-matched controls regardless of whether they were early or late
samples. Relative to the second issue, there was clearly a personal com-
ponent. Mathematically, samples from the same individual were most
similar to each other, indicating that each personmay have a distinctive
and stable immunosignature, analogous to a fingerprint. Immunologi-
cally, even the personal component could not overwhelm the similarity
to other AD patients.

The ability to define an AD signature could have value in several
ways, including confirmation of diagnosis, enrollment in clinical trials,
and monitoring responses to treatment. Lacking practical tests to diag-
nose AD is not only problematic for patient care, it also represents a bar-
rier for clinical trials, since many enrolled subjects will not have the
disease of interest and therefore, would not expect benefit from the
studied intervention. Antibody-based diagnostic tests have experienced
renewed interest with the development of microarrays featuring plas-
ma cytokines (Ray et al., 2007) and random-sequence peptides
(Caiazzo et al., 2007; Roche et al., 2008; Reddy et al., 2011; Restrepo
et al., 2011; Vuong, 2011). On the other hand, surveying the antibody
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repertoire of individuals with or without a disease has many advan-
tages. There are 10 (Hughes et al., 2012) estimated different antibody
specificities, reflecting exposure to various antigens with B-cells ampli-
fying the signal thousands of times over circulating biomarker levels
(Sulzer et al., 1993; Cooperman et al., 2004; Cenci and Sitia, 2007). An-
tibodies are produced early in the course of diseases and are easily re-
trieved from body fluids. Antibodies are relatively durable and easily
stored, being suitable for retrospective analysis. Until recently, immu-
noassays were limited by the traditional view that the eliciting antigen
needs to be known and immobilized to detect an antibody response.
However, we and others have developed unbiased platforms to evalu-
ate antibodies using random-sequence peptides, which principally be-
have as mimetics of unknown antigens. This technology only requires
that a significant antibody response has been made — it need not be
overwhelming or protective. Ideally, AD should be detected at the
pre-symptomatic or early symptomatic stages, when promising
disease-modifying therapies are expected to exert the greatest benefit
(Buckholtz, 2011). Unfortunately, these stages are also the least under-
stood aspects of the disease, and the most susceptible to diagnostic
misclassification with current standards. This explains the impetus to
test late-stage signatures for early-stage diagnosis.

We have demonstrated several unique aspects that relate immuno-
signaturing and AD. First, there is an early immunological response that
is detectable by our peptide microarray. It is clearly distinct from
late-stage immune response, as a late-stage response can be seen
steadily increasing from early to late time points. We also noted that
7/39 peptides also reactedwith purified anti-Aβ antibodies, the concen-
tration of which progressively increases with age in the brain and plas-
ma of transgenic mice. These changes in the antibody repertoire of
transgenic mice illustrate the complexity of their pathological process,
with amyloid overproduction setting off a cascade of events where ad-
ditional epitopes become targeted by the immune system as animals
grow older. Notably, there is also a robust early-stage signature, which
fades during the full duration of the experiment (data not shown),
suggesting that a population of antigens – that might be potential
drug targets – decrease or disappear as symptoms emerge.With proper
biochemical purification procedures, peptides from early-stage AD
could be used to physically purify early-stage antibodies. These early
antibodies can then be used to identify or purify the eliciting antigens,
provided an appropriate cohort of patients could be found.

From the practical point of view of developing a human diagnostic, it
is challenging in the short-term to acquire samples from all AD stages.
Using themousemodel does not circumvent this issue, but provides rel-
evant insights. For instance, by dividing themice into early,mid and late
life stages, we found peptides from each stage that separated transgenic
mice from littermates with 100% accuracy. There was no overlap be-
tween the 35 peptides between late and early stages. The 35most infor-
mative peptides for early-stages were also included in the top 130
late-stage predictive peptides (pb0.000117) but were not at the top
of the list. Obviously, this test is artificial because we knew where to
draw the threshold to include the 35 early-stage peptides, but this dem-
onstrates that inclusive rather than exclusive strategies for choosing
late-stage peptides for a diagnostic are more likely to succeed.

It may also be possible to utilize MCI cases that eventually progress
to AD.While no overlap occurred between early and late-stage peptides
in mice, there was overlap between early and mid-stage peptides. It
may be useful to employ MCI samples to define early-stage peptides
for the diagnostic test.

What are the implications for developing a diagnostic test for
early-stage AD? To the extent that the mouse model and its caveats
can guide this effort, it is encouraging that the disease signature
starts early in life. This work also implies that optimizing the diag-
nostic test using late-stage AD or MCI patients may not provide
much overlapwith early immunological response but it also suggests
that late-stage immunosignatures should be used very broadly when
searching for an early AD diagnostic. This has the shortcoming of
introducing non-informative peptides and noise in the analysis, but
our mouse experiments indicate that this may not be prohibitive in
developing an accurate diagnostic test.
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